E-ISSN: 2321-9637

Intuitionistic Fuzzy g[#] Closed Sets

¹S.Abhirami, ²R.Dhavaseelan

Department of Mathematics Sona College of Technology, Salem-636005, Tamilnadu, India ¹E-mail:abhiramishanmugasundaram@gmail.com ²E-mail:dhavaseelan.r@gmail.com

Abstract- In this chapter the concepts of intuitionistic fuzzy g# closed set, intuitionistic fuzzy g# continuous mapping, strongly intuitionistic fuzzy g# continuous mapping, intuitionistic fuzzy g# irresolute mapping and perfectly intuitionistic fuzzy g# continuous mapping are studied. The concept of intuitionistic fuzzy g# compact is introduced. Some interesting properties are investigated besides giving some examples.

Keywords: intuitionistic fuzzy g# closed set, intuitionistic fuzzy g# continuous mapping, strongly intuitionistic fuzzy g# continuous mapping, intuitionistic fuzzy g# irresolute mapping, perfectly intuitionistic fuzzy g# continuous mapping, and intuitionistic fuzzy g#compact

2000 MSC No: 54A40, 03E72.

1. Introduction

The fuzzy concept has invaded almost all branches of mathematics ever since the introduction of fuzzy sets by L.A.Zadeh[11]. Fuzzy sets have applications in many field such as information [9] and control [10]. The theory of fuzzy topological space was introduced and developed by C.L.Chang[6] and since then various notions in classical topology have been extended to fuzzy topological space. The idea of "intuitionistic fuzzy set" was first published by Atanassov[1]and many works by the same author and his colleagues appeared in the literature [2-4].Later this concept was generalized to "intuitionistic L -fuzzy set" by Atanassov and stoeva[5]. The concept of generalized intuitionistic fuzzy closed set was introduced by R.Dhavaseelan , E.Roja and M.K.Uma [7].The concept of intuitionistic fuzzy generalized alpha open set was introduced by D.Kalamani , K.Sakthivel and C.S.Gowri [8]. In this chapter the concepts of intuitionistic fuzzy g# closed set, intuitionistic fuzzy g# continuous mapping, strongly intuitionistic fuzzy g# continuous mapping, intuitionistic fuzzy g# irresolute mapping and perfectly intuitionistic fuzzy g# continuous mapping are studied. The concept of intuitionistic fuzzy g# compact is introduced. Some interesting properties are investigated besides giving some examples.

2. Preliminaries

Definition 2.1[3]: Let X be a nonempty fixed set. An intuitionistic fuzzy set(IFS for short)A is an object having the form A = { $< x, \mu_A(x), \delta_A(x) >: x \in X$ } where the function $\mu_A : X \to 1$ and $\delta_A(x): X \to 1$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmember ship ($\delta_A(x)$) of each element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \delta_A(x) \le 1$ for each $x \in X$.

Definition 2.2[3]: Let X be an nonempty set and intuitionistic fuzzy sets A and B in the form $A = \{ \langle x, \mu_A(x), \delta_A(x) \rangle : x \in X \}, B = \{ \langle x, \mu_B(x), \delta_B(x) \rangle : x \in X \}$. Then

(a)
$$A \subseteq B$$
 iff $\mu_A(x) \leq \mu_B(x)$ and $\delta_A(x) \geq \delta_B(x)$ for all $x \in X$;
(b) $A = B$ iff $A \subseteq B$ and $B \subseteq A$;
(c) $\overline{A} = \{ \leq x, \delta_A(x), \mu_A(x) >: x \in X \}$
(d) $A \cap B = \{ \leq x, \mu_A(x) \cap \mu_B(x), \delta_A(x) \cup \delta_B(x) >: x \in X \}$
(e) $A \cup B = \{ < x, \mu_A(x) \cup \mu_B(x), \delta_A(x) \cap \delta_B(x) >: x \in X \}$
(f) $A = \{ < x, \mu_A(x), 1 - \mu_A(x) >: x \in X \}$
(g) [f] $A = \{ < x, 1 - \delta_A(x), \delta_A(x) >: x \in X \}$

Definition 2.3[3]: Let {A_i: i ∈ J}be an arbitrary family of intuitionistic fuzzy sets in X. Then

(a) $\cap A_i = \{ \le x_i \cap \mu_{A_i}(x), U\delta_{A_i}(x) \ge x \in X \}$ (b) $UA_i = \{ \le x, U\mu_{A_i}(x), \cap \delta_{A_i}(x) \ge x \in X \}$

Since our main purpose is to construct the tools for developing intuitionistic fuzzy topological spaces, we must introduce the intuitionistic fuzzy sets 0_{\sim} and 1_{\sim} in X as follows:

Definition 2.4[3]:
(a)
$$0_{\sim} = \{ < x, 0, 1 > : x \in X \}$$

(b) $1_{\sim} = \{ < x, 1, 0 > : x \in X \}$

Definition 2.5[3]: An intuitionistic fuzzy topology on X is a family τ of intuitionistic fuzzy sets in X satisfying the following axioms.

(i) 0_~, 1_~ **∈** τ

(ii) $G_1 \cap G_2 \in \boldsymbol{\tau}$, for any $G_1, G_2 \in \boldsymbol{\tau}$

(iii) $UG_i \subseteq \tau$ for any family $\{G_i \setminus i \subseteq J\}$ in τ

In this case the pair (X, τ) is called an intuitionstic fuzzy topology space and any intuitionstic fuzzy set in τ is known as an intuitionistic fuzzy open set in X.

The complement A^c of an intuitionistic fuzzy open set A in an intuitionistic fuzzy topology space (X, τ) is called an intuitionistic fuzzy closed set in X.

Definition 2.6[3]:(a) If $B = \{ \le y, \mu_B(x), \delta_B(x) \ge y \in Y \}$ is an intuitionistic fuzzy set in Y, then the preimage of B under f, denoted by $f^{-1}(B)$, is the intuitionistic fuzzy set in X defined by $f^{-1}(B) = \{ \le x, f^{-1}(\mu_B)(x), f^{-1}(\delta_B)(x) \ge x \in X \}$ (b) If $A = \{ \le x, \lambda_A(x), \gamma_A(x) \ge x \in X \}$ is an intuitionistic fuzzy set in X, then the image of A under f, denoted by f(A), is the intuitionistic fuzzy set in Y defined by $f(A) = \{ \le y, f(\lambda_A)(y), (1 - f(1 - \gamma_A))(y) \ge y \in Y \}$. Where

$$f(\lambda_A)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \lambda_A(x), & \text{if } f^{-1}(y) \neq 0\\ 0, & \text{o therwise} \end{cases}$$

$$(1-f(1-\gamma_A))(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \gamma_A(x), & \text{if } f^{-1}(y) \neq 0\\ 1, & \text{otherwise} \end{cases}$$

for the sake of simplicity, let us use the symbol $f_{-}(\gamma_A)$ for $(1 - f(1 - \gamma_A))$.

Definition 2.8[7]:Let (X,T) be an intuitionistic fuzzy topological space . An intuitionistic fuzzy set A in (X,T) is said to be generalized intuitionistic fuzzy closed if intuitionistic fuzzy $cl(A) \subseteq G$ whenever $A \subseteq G$ and G is intuitionistic fuzzy open. The complement of a generalized intuitionistic fuzzy closedset is generalized intuitionistic fuzzy open.

Definition 2.9[8]: An intuitionistic fuzzy set A in(X, τ) is said to be an intuitionistic fuzzy generalized alpha open set if \propto int(A) \supseteq U whenever A \supseteq U and U is an intuitionistic fuzzy alpha closed set in (X, τ)

3. Intuitionistic fuzzy g[#] Closed sets and Intuitionistic fuzzy g[#] continuous functions

Definition 3.1: Let (X, T) be an intuitionistic fuzzy topological space and Let A be an intuitionistic fuzzy set in X. Then A is said to be intuitionistic fuzzy g# closed if IFcl (A) \subseteq U whenever A \subseteq U and U is an intuitionistic fuzzy generalized α open.

The complement of intuitionistic fuzzy g# closed set is intuitionistic fuzzy g# open.

Definition 3.2: Let (X, T) be an intuitionistic fuzzy topological space and Let A be an intuitionistic fuzzy set in X. Then intuitionistic fuzzy g^{\ddagger} closure and intuitionistic fuzzy g^{\ddagger} interior are defined by

(a) IFg#cl (A) = $\bigcap \{G \setminus G \text{ is a IF } g \# \text{ closed set in } X \text{ and } A \subseteq G \}$

(b) IFg#int (A) = \bigcup {K\ K is a IF g# open set in X and K \subseteq A}

Definition 3.3: Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces.

(a) A map $f:(X,T)\to(Y,S)$ is said to be intuitionistic fuzzy $g^{\text{#}}$ continuous if the pre image of every open set in (Y,S) is intuitionistic fuzzy $g^{\text{#}}$ open set in (X,T).

(b) A map $f:(X,T)\to(Y,S)$ is said to be intuitionistic fuzzy $g^{\#}$ irresolute if the preimage of every intuitionistic fuzzy $g^{\#}$ open set in (Y,S) is intuitionistic fuzzy $g^{\#}$ open set in (X,T).

(c) A map $f : (X,T) \rightarrow (Y,S)$ is said to be strongly intuitionistic fuzzy g^{\ddagger} continuous if the preimage of every intuitionistic fuzzy g^{\ddagger} open set in (Y,S) is intuitionistic fuzzy open set in (X,T).

(d) A map $f : (X,T) \rightarrow (Y,S)$ is said to be perfectly intuitionistic fuzzy $g^{\text{#}}$ continuous if the preimage of every intuitionistic fuzzy $g^{\text{#}}$ open set in (Y,S) is both intuitionistic fuzzy open and intuitionistic fuzzy closed in (X,T).

Proposition 3.4: Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f : (X,T) \rightarrow (Y,S)$ be intuitionstic fuzzy g# continuous .Then for every intuitionstic fuzzy set A in X, $f(IFg#cl(A)) \subseteq IFcl(f(A))$ **Proof:** Let A be an intuitionistic fuzzy set in (X, T). Since IFcl (f (A)) is an intuitionistic fuzzy closed set and f is a intuitionstic fuzzy g# continuous mapping, $f^{-1}(IFcl(f(A)))$ is a intuitionistic fuzzy g# closed set and f $^{-1}(IFcl(f(A))) \supseteq A$.Now IFg#cl(A) $\subseteq f^{-1}(IFcl(f(A))$. Therefore f (IFg#cl(A)) \subseteq IFcl(f(A)).

Proposition 3.5: Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f : (X,T) \rightarrow (Y,S)$ be intuitionstic fuzzy g# continuous .Then for every intuitionstic fuzzy set A in Y, IFg#cl($f^{-1}(A)$) $\subseteq f^{-1}$ (IFcl(A)) **Proof:** Let A be an intuitionistic fuzzy set in (Y,S). Let B = $f^{-1}(A)$.Then $f(B) = f(f^{-1}(A) \subseteq A$. By proposition 3.4, $f(IFg#cl(f^{-1}(A))) \subseteq IFcl(f(f^{-1}(A))$. Thus IFg#cl($f^{-1}(A)$) $\subseteq f^{-1}(IFcl(A))$.

Proposition 3.6: Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. If A is a IFg# closed set in (X,T) and if $f:(X,T)\rightarrow(Y,S)$ is intuitionstic fuzzy continuous and intuitionstic fuzzy closed, then f(A) is IFg# closed in(Y,S).

Proposition 3.7: Let (X, T) and (Y,S) be any two intuitionistic fuzzy topological spaces. if $f : (X,T) \rightarrow (Y,S)$ is intuitionstic fuzzy continuous then it is IFg# continuous. The converse of Proposition 3.7 need not true. See Example 3.8

Example 3.8: Let X= {a,b,c} and Y={a,b,c} Define the intuitionstic fuzzy sets A,B and C as follows

A = (x, (0.4, 0.4, 0.4), (0.5, 0.5, 0.5))

 $B = \langle x, (0.5, 0.6, 0.7), (0.4, 0.3, 0.2) \rangle$ and

 $C = \langle x, (0.4, 0.6, 0.5), (0.3, 0.3, 0.4) \rangle.$

Then $T = \{0_{-}, 1_{-}, A, B\}$ and $S = \{0_{-}, 1_{-}, C\}$ are intuitionstic fuzzy topologies on X and Y. Thus (X, T) and (Y, S) are intuitionistic fuzzy topological spaces. Define $f : (X,T) \rightarrow (Y,S)$ as follows . f(a)=a,f(b)=b,f(c)=c. Clearly f is IFg# continuous. Now f is not IF continuous, Since for $f^{-1}(C) \notin T$ for $C \in S$.

Propositions 3.9: Let (X, T) and (Y, S) be any two intuitionistic fuzzy topological spaces. If $f : (X,T) \rightarrow (Y,S)$ is intuitionstic fuzzy g# irresolute then it is IFg# continuous.

The converse of Proposition need not true. See Example 3.10

Example 3.10: Let X= {a,b,c} and Y={a,b,c}. Define the intuitionistic fuzzy sets A, B and C as follows A = (x, (0.4, 0.5, 0.5), (0.5, 0.5, 0.5))B = (x, (0.6, 0.7, 0.6), (0.4, 0.3, 0.4)) and C = (x, (0.5, 0.5, 0.5), (0.4, 0.4, 0.4)).

Then T = {0, 1, A, B} and S = {0, 1, C} are intuitionstic fuzzy topologies on X and Y. Thus (X, T) and (Y, S) are intuitionstic fuzzy topological spaces. Define f :(X, T) \rightarrow (Y,S) as follows . f (a)=a,f(b)=b,f(c)=c. Clearly f is IFg# continuous. But f is not IF g# irresolute. Since D = {x, (0.6, 0.6, 0.5), (0.4, 0.4, 0.5)} is IFg# open in (Y,S), f¹(D) is not IFg# open in (X,T)

Proposition 3.11: Let (X, T) and (Y, S) be any two intuitionistic fuzzy topological spaces. if $f:(X,T)\to(Y,S)$ is strongly intuitionistic fuzzy g# continuous then it is intuitionistic fuzzy continuous.

The converse of Proposition need not true. See Example 3.12

Example 3.12: Let X= {a,b,c} and Y={a,b,c}. Define the intuitionistic fuzzy sets A, B and C as follows A = (x, (0.5, 0.4, 0.5), (0.3, 0.3, 0.3))

B = (x, (0.6, 0.5, 0.6), (0.3, 0.2, 0.3)) and

 $C = \langle x, (0.5, 0.5, 0.6), (0.2, 0.2, 0.3) \rangle$

Then T = {0,1,A,B} and S = {0,1,C} are intuitionstic fuzzy topologies on X and Y. Thus (X,T) and (Y,S) are intuitionstic fuzzy topological spaces. Define f :(X,T) \rightarrow (Y,S) as follows . f(a)=c,f(b)=b,f(c)=c. Clearly f is IF continuous. But f is not strongly IF g# irresolute. Since D = {x, (0.7,0.8,0.7), (0.1,0.1,0.1)} is IFg# open in (Y, S), f⁻¹(D) is not IF open in (X,T)

Proposition 3.13: Let (X, T) and (Y,S) be any two intuitionistic fuzzy topological spaces. if $f : (X,T) \rightarrow (Y,S)$ is perfectly intuitionstic fuzzy g# continuous then it is strongly intuitionstic fuzzy g# continuous.

The converse of Proposition need not true. See Example 3.14

Example 3.14:Let X= {a,b,c}, Y={a,b,c}. Define the intuitionstic fuzzy sets A,B and C as follows A = (x, (0.8, 0.8, 0.8), (0.1, 0.1, 0.1))

B = (x, (0.6, 0.5, 0.6), (0.3, 0.2, 0.3)) and

 $C = \langle x, (0.5, 0.5, 0.6), (0.2, 0.2, 0.3) \rangle$. Then

 $T = \{0_{-,}1_{-,}A,B\}$, $S = \{0_{-,}1_{-,}B\}$ are intuitionstic fuzzy topologies on X and Y. Thus (X,T) and (Y,S) are intuitionstic fuzzy topological spaces. Define $f : (X,T) \rightarrow (Y,S)$ as follows . f(a)=c, f(b)=b, f(c)=c. Clearly f is strongly intuitionstic fuzzy g# continuous. But f is not perfectly intuitionstic fuzzy g# continuous.

Since $D = \langle x, (0.8, 0.8, 0.8), (0.1, 0.1, 0.1) \rangle$ is IFg# open in (Y, S), f¹(D) is intuitionistic fuzzy open and not intuitionistic fuzzy closed in (X,T)

Proposition 3.15: Let (X,T), (Y,S) and (Z,R) be any three intuitionistic fuzzy topological spaces. Suppose f : $(X,T) \rightarrow (Y,S)$, g : $(Y,S) \rightarrow (Z,R)$ be maps .Assume f is intuitionstic fuzzy g# irresolute and g is intuitionstic fuzzy g# continuous then g o f is intuitionstic fuzzy g# continuous.

Proposition 3.16: Let (X,T), (Y,S) and (Z,R) be any three intuitionistic fuzzy topological spaces. Suppose f : $(X,T) \rightarrow (Y,S)$, g : $(Y,S) \rightarrow (Z,R)$ be maps .Assume f is strongly intuitionstic fuzzy g# continuous and g is intuitionstic fuzzy g# continuous then g of is intuitionstic fuzzy continuous.

Definition 3.17: An intuitionistic fuzzy topological space (X,T) is said to be intuitionistic fuzzy $T_{1/2}$ if every intuitionistic fuzzy g# closed set in (X,T) is intuitionistic fuzzy closed in (X,T).

Proposition 3.18:Let (X,T) , (Y,S)and (Z,R) be any three intuitionistic fuzzy topological spaces.Let f :(X,T) \rightarrow (Y,S) & g :(Y,S) \rightarrow (Z,R)be maps and (Y,S) be intuitionistic fuzzy T_{1/2} .If f and g are intuitionstic fuzzy g# continuous then g of is intuitionstic fuzzy g# continuous.

This proposition is not valid if (Y,S) is not intuitionistic fuzzy $T_{1/2}$.

Example 3.19: Let X= {a,b,c}. Define the intuitionistic fuzzy sets A,B and C as follows.

 $A = \langle x, (0.4, 0.4, 0.6), (0.4, 0.4, 0.3) \rangle$

B = (x, (0.5, 0.5, 0.6), (0.3, 0.4, 0.3)) and

 $C = \langle x, (0.6, 0.6, 0.6), (0.5, 0.3, 0.4) \rangle$

Then the family $T = \{0,1,A\},S = \{0,1,B\}$ and $R = \{0,1,C\}$ are intuitionistic fuzzy topologies on X. Thus (X,T),(X,S) and (X,R) are intuitionistic fuzzy topology spaces on X. Also define $f : (X,T) \rightarrow (Y,S)$ as f(a)=a, f(b)=b & f(c)=c and $g : (Y,S) \rightarrow (Z,R)$ as g(a)=a, g(b)=b & g(c)=c. clearly f and g are intuitionstic fuzzy g# continuous. But g o f is not intuitionistic fuzzy g# continuous. Since \overline{C} is intuitionistic fuzzy closed in (X,R). therefore $f^{-1}(\overline{C})$ is not intuitionistic fuzzy closed in (X,T) because (X,S) is not intuitionistic fuzzy T_{1/2} space. Therefore g o f is not intuitionistic fuzzy g# continuous.

INTERRELATION

From the above results proved, we have a diagram of implications as shown below.

In the diagram A,B,C,D and E denote intuitionistic fuzzy continuity,IF $g^{\#}$ -continuity, intuitionistic fuzzy $g^{\#}$ irresolute, perfectly IF $g^{\#}$ -continuity and strongly IF $g^{\#}$ -continuity respectively.

4. Intuitionistic fuzzy g# compactness

Definition 4.1:Let (X,T) be an IFTS, if a family $\{\langle x, \mu_{G_i}, \gamma_{G_i} \rangle; t \in J\}$ of intuitionistic fuzzy g# open spaces in X satisfies the condition $\bigcup \{\langle x, \mu_{G_i}, \gamma_{G_i} \rangle; t \in J\} = 1$. Then it is called a intuitionistic fuzzy g# open cover of X.

A finite sub family of a intuitionistic fuzzy g# open cover $\{ < x, \mu_{G_i}, \gamma_{G_i} >; i \in J \}$ of X which is also a intuitionistic fuzzy g# open cover of X, is called a finite sub cover of $\{ < x, \mu_{G_i}, \gamma_{G_i} >; i \in J \}$

E-ISSN: 2321-9637

Definition 4.2: An Intuitionistic fuzzy topological space (X,T) is called Intuitionistic fuzzy g# compact iff every Intuitionistic fuzzy g# open cover of X has a finite sub cover.

Proposition 4.3: Let (X,T) and (Y,S) be any intuitionistic fuzzy topological spaces and f: (X,T) \rightarrow (Y,S) be intuitionistic fuzzy g# continuous surjection. If (X,T) is intuitionistic fuzzy g# compact then (Y,S) is also intuitionistic fuzzy g# compact.

Definition 4.4:

Let (X, T) be an intuitionistic fuzzy topological space and A be an intuitionistic fuzzy set in (X,T). If a family $\{\langle x, \mu_{G_i}, \gamma_{G_i} \rangle; i \in J\}$ of intuitionistic fuzzy g# open sets in (X, T) satisfies the condition $A \subseteq U$ $\{\langle x, \mu_{G_i}, \gamma_{G_i} \rangle; i \in J\}$ = 1, then it is called an intuitionistic fuzzy g# open cover of A.A finite sub family of a intuitionistic fuzzy g# open cover $\{\langle x, \mu_{G_i}, \gamma_{G_i} \rangle; i \in J\}$ of A, which is also a intuitionistic fuzzy g# open cover of A, is called a finite sub cover of $\{\langle x, \mu_{G_i}, \gamma_{G_i} \rangle; i \in J\}$

Definition 4.5:

An intuitionistic fuzzy set A is called intuitionistic fuzzy g# compact iff every intuitionistic fuzzy g# open cover of A has a finite sub cover.

Proposition 4.6:

Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces and f: (X,T) \rightarrow (Y,S) be intuitionistic fuzzy g# continuous function. If A is intuitionistic fuzzy g# compact in (X,T), then is f(A) is intuitionistic fuzzy g# compact in (Y,S).

Proposition 4.7:

Let (X,T) be an intuitionistic fuzzy g# compact space and suppose that A is a intuitionistic fuzzy g# closed set of (X,T) then A is an intuitionistic fuzzy g# compact.

References

- [1] Atanassov.K Intuitionistic fuzzy sets in V.Sgurev.Ed., VII ITKR's session, Sofia.(1984).
- [2] Atanassov.K Intuitionistic fuzzy sets . Fuzzy sets and systems, 20.pp.87-96. (1986)
- [3] Atanassov.K Review and new results on Intuitionistic fuzzy sets, Preprint IM-MFAIS-1-88, Sofia. (1988)

[4]Atanassov.K and Stoeva.S. Intuitionistic fuzzy sets, in : *PolishSyrup. on interval & Fuzzy Mathematics*, Poznan, pp.23-36. (August)(1983.)

- [5] Atanassov.K and Stoeva.S. Intuitionistic L- fuzzy sets, in: *Trappal,Ed., Cybernetics and system Research*, Vol .2 (Elsevier, Amsterdam).pp.539-540 (1984).
- [6] Chang.C.L.Fuzzy topological Spaces.J.Math.Anal.Appl.,24,pp.182-190. (1968)
- [7] Dhavaseelan.R,Roja.E andUma.M.K. Generalized intuitionistic fuzzy closed sets .Advances in Fuzzy Mathematics, Volume 5, Number 2, pp.157-172. (2010)
- [8] Kalamani.D,Sakthivel.K and Gowri. C.S. Generalized Alpha Closed Sets in Intuitionistic Fuzzy Topological Spaces. *Applied mathematical Sciences*, Volume 6, Number 94, 4691-4700.
- [9] Smets.P.The degree of belief in a fuzzy event, Information Sciences, 25 pp.1-19. (1981)
- [10] Sugeno. M.An Introductory survey of fuzzy control, Information Sciences, 36, pp. 59-83. (1985)
- [11] Zadeh. L.A.Fuzzy sets, Informand control, 8.pp.338-353.